Search results for " 28A50"
showing 2 items of 2 documents
Weak separation condition, Assouad dimension, and Furstenberg homogeneity
2015
We consider dimensional properties of limit sets of Moran constructions satisfying the finite clustering property. Just to name a few, such limit sets include self-conformal sets satisfying the weak separation condition and certain sub-self-affine sets. In addition to dimension results for the limit set, we manage to express the Assouad dimension of any closed subset of a self-conformal set by means of the Hausdorff dimension. As an interesting consequence of this, we show that a Furstenberg homogeneous self-similar set in the real line satisfies the weak separation condition. We also exhibit a self-similar set which satisfies the open set condition but fails to be Furstenberg homogeneous.
The metric-valued Lebesgue differentiation theorem in measure spaces and its applications
2021
We prove a version of the Lebesgue Differentiation Theorem for mappings that are defined on a measure space and take values into a metric space, with respect to the differentiation basis induced by a von Neumann lifting. As a consequence, we obtain a lifting theorem for the space of sections of a measurable Banach bundle and a disintegration theorem for vector measures whose target is a Banach space with the Radon-Nikod\'{y}m property.